Community Viral Load (CVL): A Novel Marker to Measure Progress in HIV Prevention

Amanda D. Castel, MD, MPH
Associate Professor
Milken Institute School of Public Health
George Washington University

April 20, 2015
Objectives

• Define Community Viral Load (CVL) and approaches to measuring it

• Highlight challenges and limitations in the use of CVL

• Provide examples of how CVL can be used to identify health disparities and inform HIV treatment and prevention efforts
What is the Viral Load?

• The viral load is a measure of the amount of virus circulating in the blood of an HIV infected person
 – HIV RNA
 – Measured in copies/ml
• VL is routinely monitored by HIV care providers
• Goal is to get it to “undetectable” level which improves person’s health and reduces risk of transmission to almost zero
What is Community Viral Load?

• A population-based measure of the concentration of viral load in HIV-infected individuals
• Represents the level of viremia in a community in a geographic area
• Community viral load (CVL) is a potential biomarker for HIV transmission and quality of HIV care and treatment

Source: CDC CVL Guidance Document
What is the Importance of Community Viral Load?

• By measuring CVL, can assess progress in treatment and therefore reductions in a community's level of viremia

• Declining CVL should be associated with a reduction in new HIV infections (“incident cases”)

Source: CDC CVL Guidance Document
Evidence in Support of CVL

Viral load (HIV-1 RNA copies/ml) and HIV transmission

VL chief predictor of transmission (Quinn et al. NEJM 2000)

96% reduction in transmission if treat partner early in infection

Modeling of Test and Treat

Routine testing, linkage to care and ART initiation will result in 99% reduction in infectiousness (Granich et al, Lancet 2009)
Two Main CVL Measures

• Total CVL
 – Sum of all viral loads of people living with HIV in a particular community
 – Measures population’s potential infectiousness

• Mean or median CVL
 – Sum of all viral loads of people living with HIV in a particular community divided by the total number of people
 – Measure of average viral burden in the population
Things to Consider when Measuring CVL

- How define your “community”
 - Monitored
 - Population
 - In-care
- Which viral load measure to use
 - Most recent vs. average of all viral loads
 - Depends on time period looking at
- How to deal with missing data
 - Assume high VL among people with missing data
 - Ignore missing data
- Assume reflective of sexual behaviors or other HIV transmission risks in the community
Conceptual Framework for Measuring CVL

Source: CDC CVL Guidance Document
Examples of populations with the same HIV prevalence and CVL but different potential for ongoing HIV transmission
Examples of populations with the same HIV prevalence and CVL but different potential for ongoing HIV transmission.
Examples of populations with the same HIV prevalence and CVL but different potential for ongoing HIV transmission
Examples of populations with the same HIV prevalence and CVL but different potential for ongoing HIV transmission
Examples of Cities Using CVL

• Studies have supported CVL as a means of measuring HIV incidence:
 – Vancouver (Montaner) - direct relationship between viral RNA concentration and HIV incidence among IDUs
 – British Columbia (Wood) - increased ART coverage resulted in decreased VL and decrease in number of new HIV diagnoses
 – San Francisco (Das) - direct association between mean CVL and HIV incidence - 23,348 copies/ml
 – New York City (Laraque/Terzian) - variations between CVL and individual and neighborhood characteristics - 20,318 copies/ml
Measuring CVL in Washington, DC to Identify Health Disparities
Prevalence of HIV in Washington, DC, 2012

- 16,072 people living with HIV in DC
- 4,330 new HIV cases reported between 2008 and 2012
- 2.5% of the District’s population diagnosed with HIV
- ½ to 1/3 of people may be unaware of their HIV status

Source: DC Dept. of Health, 2014 Annual Epidemiology and Surveillance Report
Measuring CVL in Washington, DC

- Used public health surveillance data from 2004-2008
- Used current addresses of HIV+ persons
- Looked at completeness of VL data (indicator or not being in care)
- Measured the mean and total CVL
- Mapped the mean CVL along with selected indicators of SES by geopolitical designation (Ward) and census tract
Results: Disparities in Mean CVL, Total CVL and Undetectable VL

<table>
<thead>
<tr>
<th></th>
<th>Missing VL</th>
<th>Mean CVL</th>
<th>Total CVL</th>
<th>Detectable VL (≥400 copies/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (N=15,467)</td>
<td>52%</td>
<td>33,847</td>
<td>158,541,289</td>
<td>43%</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blacks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-29 yr olds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterosexuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDUs</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Uninsured</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Publically insured</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Decreases in mean CVL were not significantly associated with the number of newly diagnosed HIV/AIDS cases after controlling for time, late testers and ward. (p=0.11)
Areas with the higher mean and total CVLs appear to correspond to those areas with the worst SES indicators.
Other Examples of How is CVL Being Used Currently

• To monitor prevention activities
• To assess the impact of care and treatment programs
• To identify “hot spots” and populations at risk for HIV infection
• To identify disparities and target resources
• To measure progress in achieving the goals of the National HIV/AIDS Strategy
• To measure the impact of large community based HIV testing studies (e.g., Test and Treat and Testing and Linkage to Care Plus Study)
Summary

• Use of CVL as an proxy for the viral burden in a community has increased over time

• Useful marker for assessing trends, programmatic effects, and identifying disparities in HIV care, treatment, and access

• Geospatial and subgroup analyses may be useful for informing targeted interventions

• Based on initial CVL study findings need to focus on:
 • Universal HIV testing
 • Universal ART coverage
 • Programs to increase retention in care and adherence
 • Continued measurement of CVL over time
Acknowledgments

DC DOH HIV/AIDS, Hepatitis, STD, TB Administration
- Angelique Griffin
- Michael Kharfen
- Rowena Samala
- Tiffany West

George Washington University Milken Institute School of Public Health
- Sarah Willis
- Alan Greenberg
- Montina Befus

Colleagues and Collaborators
- Dr. Moupali Das
- Dr. Arpi Terzian
- Dr. Fabienne Laraque

Dr. Castel’s research is supported by the GW-DC DOH Public Health Academic Partnership Contract Number POHC-2011-C-0037.